Stochastic Calculus

Exercice 172 ⭐️⭐️ Classical Continuous Martingales

Let T>0\displaystyle T>0, fL2(0,T)\displaystyle f\in L^2 (0, T ) and (Wt)\displaystyle (W_t) be a (Ft)\displaystyle ({\mathcal F}_t)-Brownian Motion. Show that the processes

  1. Xt=(0tf(s)dWs)20tf(s)2ds\displaystyle X_t = \left(\int_0^t f(s)dW_s\right)^2 - \int_0^tf(s)^2ds
  2. Yt=exp(0tf(s)dWs120tf(s)2ds)\displaystyle Y_t = \exp \left( \int_0^t f(s)dW_s - \frac12 \int_0^t f(s)^2ds \right)

are (Ft)\displaystyle ({\mathcal F}_t)-martingales.

  1. Using Ito’s formula with the C2\displaystyle C^2-function f(x)=x2\displaystyle f(x)=x^2 and the process Zt:=0tf(s)Ws\displaystyle Z_t:=\int_0^t f(s)W_s, on obtient : d(Zt2)=2ZtdZt+(dZt)2=2Ztf(t)dWt+f(t)2dt.\displaystyle d(Z_t^2) = 2Z_t dZ_t + (dZ_t)^2 = 2Z_t f(t)dW_t + f(t)^2dt. Then dXt=2Ztf(t)dWt\displaystyle dX_t = 2Z_t f(t)dW_t.
    Moreover from Itô’s isometry and Fubini,
    E0TZt2f(t)2dt=0TE[Zt2]f(t)2dt0T0Tf(s)2f(t)2 dsdt=(0Tf(t)2dt)2<.\begin{aligned} E \int_0^T Z_t^2 f(t)^2 dt &=\int_0^T E [Z_t^2] f(t)^2 dt \\ &\le\int_0^T \int_0^T f(s)^2 f(t)^2 \ dsdt= \left( \int_0^T f(t)^2 dt \right)^2<\infty.\end{aligned} Thus Xt\displaystyle X_t is the stochastic integral of a (Ft)\displaystyle ({\mathcal F}_t)-adapted process in L2(Ω×[0,T])\displaystyle L^2(\Omega\times[0,T]), et then (Xt)\displaystyle (X_t) is a (Ft)\displaystyle ({\mathcal F}_t)-martingale (not only a local-martingale).

  2. Using Ito’s formula with the C2\displaystyle C^2-function f(x)=ex\displaystyle f(x)=e^x and the process Zt:=0tf(s)dWs120tf(s)2ds\displaystyle Z_t:=\int_0^t f(s)dW_s - \frac12 \int_0^t f(s)^2ds, we obtain:
    dYt=YtdZt+12Yt(dZt)2=Ytf(t)dWt.dY_t = Y_t dZ_t + \frac{1}{2} Y_t (dZ_t)^2 = Y_t f(t)dW_t. Noticing that 0tf(s)dWsN(0,0tf(s)2ds),\displaystyle \int_0^t f(s)dW_s \sim \mathcal N\left(0,\int_0^t f(s)^2ds\right), on get that eZtL2(Ω)\displaystyle e^{Z_t} \in L^2(\Omega) and then tE[eZt]\displaystyle t\mapsto E [e^{Z_t}] is continuous. Thus E0TYt2dt<\displaystyle E \int_0^T Y_t^2 dt<\infty, and we conclude in the same way as 1)\displaystyle 1).

Exercice 173 ⭐️⭐️ Black-Scholes Model

Let μ,σR\displaystyle \mu,\sigma\in\R. Solve the SDE :  dSt=St(μdt+σdWt)\displaystyle \ dS_t=S_t(\mu dt+\sigma dW_t), S0>0.\displaystyle S_0>0.

Let S\displaystyle S be a positive semi-martingale verifying the SDE. The map tSt\displaystyle t\mapsto S_t is not differentiable a.s. since the Brownian Motion is not. If a function R\displaystyle R is differentiable, then dRtRt=dlog(Rt)\displaystyle \frac{dR_t}{R_t}=d\log(R_t). So we feel like computing dlog(St)\displaystyle d\log(S_t). Hence we apply Itô’s formula with:

  1. the function f:xlog(x)\displaystyle f:x\mapsto \log(x) sur R+\displaystyle \R_+^* ; we have f(x)=1/x\displaystyle f'(x)=1/x et f(x)=1/x2\displaystyle f''(x)=-1/x^2 ;
  2. the process St\displaystyle S_t ; we have dSt=St(μdt+σdWt)\displaystyle dS_t=S_t(\mu dt+\sigma dW_t) et (dSt)2=St2σ2dt\displaystyle (dS_t)^2=S_t^2\sigma^2 dt.

This yields dlog(St)=dStSt12(dSt)2St2=μdt+σdWtσ22dt.d\log(S_t)=\frac{dS_t}{S_t}-\frac12\frac{(dS_t)^2}{S_t^2}=\mu dt+\sigma dW_t-\frac{\sigma^2}{2}dt. We integrate between 0\displaystyle 0 et t\displaystyle t both sides: log(St)log(S0)=(μσ22)t+σWt,\log(S_t)-\log(S_0)=\left(\mu-\frac{\sigma^2}{2}\right)t+\sigma W_t, thus St=S0e(μσ22)t+σWt\displaystyle S_t=S_0e^{\left(\mu-\frac{\sigma^2}{2}\right)t+\sigma W_t}. We verify that St>0\displaystyle S_t>0. Conversely, this last process is a solution of the SDE.

Remark — In the literature, the infinitesimal quadratic variation is often denoted by dSt\displaystyle d\langle S\rangle_t, but we must remember that “morally” it is a squarred increment of St\displaystyle S_t, explaining the notation (dSt)2\displaystyle (dS_t)^2 we used, which is quite convenient!