Topology

Exercice 485 ⭐️⭐️ Contraction Mapping Theorem

Let (X,d)\displaystyle (X,d) be a complete metric space. Let f:XX\displaystyle f:X\to X be a contracting map, i.e. there exists α<1\displaystyle \alpha<1 such that for all x,yX\displaystyle x,y\in X, d(f(x),f(y))α d(x,y)\displaystyle d(f(x),f(y))\le \alpha\ d(x,y). Let x0X\displaystyle x_0\in X and (xn)n0\displaystyle (x_n)_{n\ge 0} be defined by xn+1=f(xn)\displaystyle x_{n+1}=f(x_n). Show that (xn)\displaystyle (x_n) converges with exponential speed to the unique fixed point of f\displaystyle f.

Induction, Geometric series, Cauchy sequence.

For n1\displaystyle n\ge1, we have d(xn+1,xn)=d(f(xn),f(xn1))α d(xn,xn1)\displaystyle d(x_{n+1},x_n)=d(f(x_{n}),f(x_{n-1}))\le \alpha\ d(x_{n},x_{n-1}). Thus by induction, d(xn+1,xn)αn d(x1,x0)\displaystyle d(x_{n+1},x_n)\le \alpha^n\ d(x_{1},x_{0}). Hence, for m>n1\displaystyle m> n\ge1, by the triangle inequality, d(xm,xn)k=nm1αk d(x1,x0)αn1αd(x1,x0).\begin{aligned} d(x_{m},x_n) & \le \sum_{k=n}^{m-1}\alpha^k\ d(x_{1},x_{0})\\ & \le \frac{\alpha^n}{1-\alpha} d(x_{1},x_{0}). \\ \end{aligned} Since limnαn=0\displaystyle \lim_{n\to\infty}\alpha^n =0, we deduce that (xn)\displaystyle (x_n) is a Cauchy sequence in the complete space X\displaystyle X, so (xn)\displaystyle (x_n) converges to pX\displaystyle p\in X. Since f\displaystyle f is continuous, limnf(xn)=f(p)\displaystyle \lim_{n\to\infty}f(x_n)=f(p). But we also have limnxn+1=p\displaystyle \lim_{n\to\infty}x_{n+1}=p. Thus f(p)=p\displaystyle f(p)=p. Assume that f(p)=p\displaystyle f(p')=p'. From d(f(p),f(p))α d(p,p)\displaystyle d(f(p'),f(p))\le \alpha\ d(p',p), we obtain (1α)d(p,p)0\displaystyle (1-\alpha)d(p',p)\le 0 and then d(p,p)=0\displaystyle d(p',p)=0 since 1α>0\displaystyle 1-\alpha>0. So the fixed point p\displaystyle p is unique. Finally, taking the limit in d(xm,xn)\displaystyle d(x_{m},x_n) as m\displaystyle m\to\infty, we obtain d(p,xn)Cαn,C>0,d(p,x_n)\le C \alpha^n, \quad C>0, i.e. the iterating sequence, starting from any point x0X\displaystyle x_0\in X, converges with exponential speed to the unique fixed point of f\displaystyle f.