Exercice 592 ⭐️⭐️⭐️ Computation of an integral with a log, M1
Compute I=∫0∞x2−1xαlogxdx.
Solution
We consider the principal determination of zα and logz on C∖iR−, and we set f(z)=z2−1zαlogz. We consider the half-circles γa,λ={a+λeiθ,0≤θ≤π} in the direct sense, and the closed path Γ associated to the following integrals : I1=∫1+rRf(x)dx, et I2=∫γ0,Rf(z), I3I4I5=∫[−R,−1−r]f(z)dz=∫R1+rx2−1eαlog(xeiπ)log(xeiπ)eiπdx=eiαπ∫1+rRx2−1xα(logx+iπ)dx=−∫γ−1,rf(z)=−iπ−2iπeiαπ=−2π2eiαπ=∫[−1+r,−r]f(z)dz=eiαπ∫r1−rx2−1xα(logx+iπ)dx,I6=−∫γ0,rf(z), I7=∫r1−rf(x)dx, et I8=−∫γ1,rf(z).
We have ∫Γf(z)dz=j=1∑7Ij=0. Therefore 0=(1+eiαπ)(∫1+rRf(x)dx+∫r1−rf(x)dx)+iπeiαπ(∫r1−rx2−1xαdx+∫1+rRx2−1xαdx)+I2−2π2eiαπ+I6+I8r→0R→∞(1+eiαπ)I+iπeiαπ∫0+∞x2−1xαdx−2π2eiαπ.
Hence (1+e−iαπ)I=2π2−iπ∫0+∞x2−1xαdx. Taking the real part, we obtain: I=4cos2(απ/2)π2.